Prevention of Visual Acuity Loss and Preservation of Photoreceptors by ANX007 in Geographic Atrophy in the Phase 2 ARCHER Trial

Glenn J. Jaffe, Sina Farsiu, Kevin Choy, Eleonora Lad, Karl Csaky, Jeffrey Heier, Charles Wykoff, Scott Borland, Lori Taylor, Qing Chang and Donald Fong

Disclosures

- 4D Molecular Therapeutics
- Annexon
- Regeneron
- Roche/Genentech
- Boehringer Ingelheim

ANX007 MOA: C1q Inhibitor

¹Stevens, 2007, Cell 131:1164; Howell, et al., 2011 J Clin Invest. 121:1429; Schafer, et al., 2012 Neuron 74: 691; Stephan et al., 2012 Annu Rev Neurosci 35:369; Hong, et al., 2016 Science. 352:712; Lui, et al., 2016 Cell 165:921; Dejanovic, et al., 2018 Neuron 100:1322; Vukojicic, et al., 2019, Cell Rep. 29:3087; Williams, et al., 2016 Mol Neurodegener 11:26; ²Yednock, et al., 2022 Int J Retina Vitreous 8:79; ³Lansita, et al., 2017 International Journal of Toxicology, 36:449

ARCHER: Phase 2 Study of ANX007 in GA

ANX007: Statistically Significant Protection From BCVA and LLVA ≥15-Letter Loss

PATIENTS WITH PERSISTENT BCVA ≥15-LETTER LOSS THROUGH MONTH 12#

*Persistent for two consecutive visits through month 12 or at last study visit $^{\text{Nominal}}$ p-value from a Chi-square test in ITT population; * Nominal p < 0.05 Final data

*Patients with single LLVA ≥15-letter loss event and at least one post-baseline LLVA measurement ^Nominal p-value from a Chi-square test; * Nominal p < 0.05 Final data

ANX007 BCVA Subgroup Analysis: Protection from VA Loss in Foveal and Non-Foveal Eyes

ANX007: Consistent Protection from Vision Loss with BCVA \geq 10-, \geq 15- and \geq 20-Letter Assessments

ANX007: Assessment of Drug Effect by Macular Location

Dimensions are approximate

ANX007: Significant Photoreceptor (EZ) Protection Through Month 12

Central Foveal Region Effect > Pan Macula Effect

ANX007: Reduced RPE Loss (FAF) in Foveal Center (1.5mm Diameter) Through 12 Months

ANX007: Assessment of Drug Effect in Patients with Less Advanced Disease

- At Study Baseline:
 - Smaller LLD (Baseline LLD < 30)
 - Low light VA (LLVA) lost first in GA
 - LLD = BCVA-LLVA
 - Lower EZ loss (< 80% in central 2.0mm)
 - Smaller lesions (< 4mm²)

ANX007: Larger Effect in Less Advanced Disease – BCVA

PATIENTS WITH PERSISTENT BCVA ≥15-LETTER LOSS THROUGH MONTH 12#

"Persistent for two consecutive visits through month 12 or at last study visit $^{\text{Nominal }}$ p-value from a Chi-square test in ITT population; * Nominal p < 0.05 Final data

ANX007: Larger Effect in Less Advanced Disease – EZ Loss

TOTAL EZ LOSS (EZ = 0 μ m) CENTRAL 2.0 MM - < 98% LOSS @ BASELINE

Nominal p-value vs sham[^] ANX007 0.0242

^Nominal p-values from a linear mixed model for repeated measures model (slope) analysis; Heidelberg Spectralis OCT population with baseline OCT data, excludes patients with >98% atrophy at baseline

TOTAL EZ LOSS (EZ = 0 μ m) CENTRAL 2.0 MM - < 80% LOSS @ BASELINE

Nominal p-value vs sham[^] ANX007 0.0575

^Nominal p-values from a linear mixed model for repeated measures model (slope) analysis; Heidelberg Spectralis OCT population with baseline OCT data, excludes patients with >80% atrophy at baseline

ANX007: Larger Effect in Less Advanced Disease – Lesion Growth

ANX007 Generally Well Tolerated

ADVERSE EVENTS OF SPECIAL INTEREST n (%)	SHAM (N=89)	ANX007 EM (N=89)	ANX007 EOM (N=92)
Choroidal Neovascularization	3 (3.4%)	4 (4.5%)	4 (4.3%)
Endophthalmitis	0	1 (1.1%)	2 (2.2%)
Retinal Vascular Occlusion	0	0	1^ (1.1%)
Retinal Vasculitis – No Cases Reported			
Intraocular Inflammation ⁺	0	2 (2.2%)	1 (1.1%)
Ischemic Optic Neuropathy ⁺ - No Cases Reported			

[^]Isolated cilioretinal artery occlusion; no vasculitis confirmed by DSMC and reading center *Not AESI, included because of current interest

INTRAOCULAR INFLAMMATION DETAILS* n

Iritis - 1

Resolved with topical steroids in 2 days No Vasculitis

Vitritis - 1

Resolved with topical steroids in 9 days No Vasculitis

Vitreous Debris - 1

KP on endothelium, prior treatment with topical steroids No Vasculitis

^{*}Event Verbatim term listed

Key Takeaways

- ANX007:
 - Protected against VA loss in ARCHER
 - Impacts on PR/RPE most pronounced in central region
 - Structure protection aligns with function protection
 - Effects larger with less advanced disease
- Findings support PR synapse protection MOA
- Informs ARCHER II phase 3 study now underway

Back-Up

ANX007 MOA: C1q Inhibitor

C1q is a key driver of neurodegeneration¹ and binds stressed photoreceptor synapses and activates the classical pathway

¹Stevens, 2007, Cell 131:1164; Howell, et al., 2011 J Clin Invest. 121:1429; Schafer, et al., 2012 Neuron 74: 691; Stephan et al., 2012 Annu Rev Neurosci 35:369; Hong, et al., 2016 Science. 352:712; Lui, et al., 2016 Cell 165:921; Dejanovic, et al., 2018 Neuron 100:1322; Vukojicic, et al., 2019, Cell Rep. 29:3087; Williams, et al., 2016 Mol Neurodegener 11:26; ²Yednock, et al., 2022 Int J Retina Vitreous 8:79; ³Lansita, et al., 2017 International Journal of Toxicology, 36:449