Efficacy of Tanruprubart For the Treatment of Guillain-Barré Syndrome in a Broad Spectrum of Patients

Henk-André Kroon¹, Jose Navarro², Zhahirul Islam³, Ping Lin¹, Glenn Morrison¹, Peter Collins¹, Benjamin Hoehn¹, Khan Abul Kalam Azad⁴, Dean R. Artis¹, Ted Yednock¹, Quazi Deen Mohammad⁵

¹Annexon Biosciences, Brisbane, CA, USA; ²José R. Reyes Memorial Medical Center, Manila, Philippines; ³Gut-Brain Axis Laboratory, icddr,b, Dhaka, Bangladesh; ⁴Dhaka Medical College and Hospital, Dhaka, Bangladesh; ⁵National Institute of Neuroscience (NINS), Dhaka, Bangladesh

INTRODUCTION

- Guillain-Barré syndrome (GBS) is a rare, rapidly progressive neuromuscular emergency that can affect anyone at anytime, often requires prolonged hospitalization and intensive care, and in some cases can be fatal¹
- Multiple neurotypes of GBS have been identified in nerve conduction studies (NCS), and can depend on the NCS criteria used.^{2,3} The relative frequencies of each NCS subtype vary across geographical regions²
- Tanruprubart (ANX005), a monoclonal antibody, is a targeted immunotherapy that selectively binds to and inhibits C1q, the initiating molecule of the classical complement pathway, thus providing rapid and complete inhibition of classical complement-mediated neuroinflammation and nerve damage^{4,5}
- GBS-02 (NCT04701164) was a Phase 3, multicenter, double-blind, placebo-controlled trial of tanruprubart in patients with GBS that met the primary endpoint and demonstrated that patients treated with tanruprubart 30 mg/kg had a 2.41-fold higher likelihood of being in a better state of health relative to placebo at Week 8 on the GBS-disability scale (GBS-DS; odds ratio [OR] 2.4, 95% CI 1.3–4.5; p=0.0058). Consistent with findings from the GBS-01 study, benefit observed with a higher dose of tanruprubart (75 mg/kg group), did not reach significance versus placebo at Week 8 (OR 1.2, 95% CI 0.65–2.2; p=0.5548)⁶
- GBS-02 primarily included the two most common NCS classifications of GBS: 61.9% with acute motor axonal neuropathy (AMAN) and 21.3% with acute inflammatory demyelinating polyneuropathy (AIDP), both of which involve the classical complement pathway^{2,6}
- Among patients in Europe and the USA in the International GBS Outcome Study (IGOS), ~60% had AIDP and ~80% had a Medical Research Council (MRC) sumscore >20; these patients tend to have relatively low serum neurofilament light (NfL) levels⁷
- Tanruprubart was well tolerated, and most adverse events were mild to moderate in severity, due to GBS, and not considered related to study drug. Rash was the most common infusion-related reaction; cases were mostly mild to moderate and resolved without sequalae⁶

OBJECTIVE

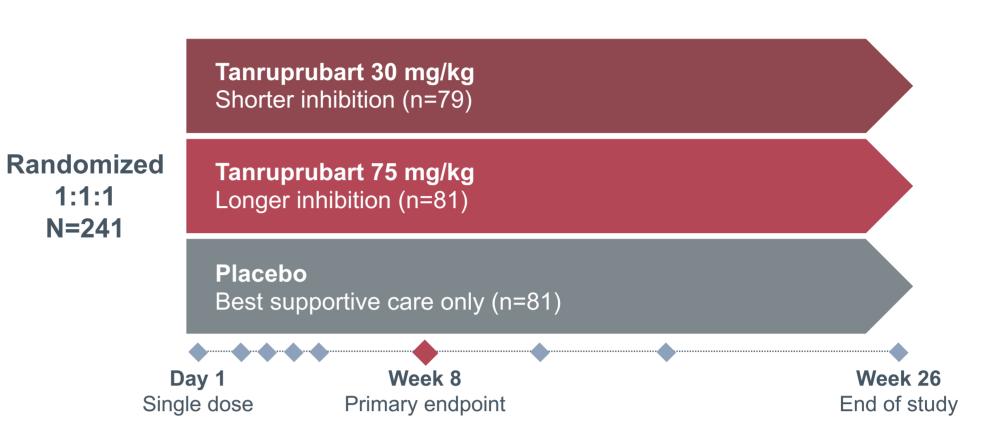
• To assess whether the findings of GBS-02 were applicable to a Western GBS population, this prespecified subgroup analysis compared the efficacy of tanruprubart 30 mg/kg in patients with moderate or severe GBS to subgroups that corresponded with Western disease characteristics

METHODS

Analysis populations

- The subgroups were defined by the following characteristics:
- GBS classifications: AIDP or AMAN
- Baseline MRC sumscore (muscle strength) >20 or ≤20, defined as a boundary for stratification in study GBS-02 based on a cluster analysis of data from IGOS Bangladesh-based GBS patients
- Baseline serum NfL <353 pg/mL or ≥353 pg/mL; 353 pg/mL was the median baseline serum NfL level in the overall population

Assessments


- MRC sumscore at Week 1 and Week 8, and GBS-DS at Week 8 were assessed⁸
- Clinically meaningful outcomes, including Overall Neuropathy Limitations Scale (ONLS), ventilation duration, time to return to walking independently (GBS-DS ≤2), Timed Up-and-Go test scores and ventilation were also assessed overall and by GBS classifications
- All p values, with the exception of GBS-DS at Week 8 for the full analysis set, are nominal

GBS-02 study design

- Patients included those:
- Aged ≥16 years

- With a GBS-DS 3, 4, or 5
- ≤10 days from onset of weakness
- Without access to intravenous
- immunoglobulin or plasma exchange Stratified by baseline prognostic
- factors (muscle strength and time from onset of weakness)

Conducted at sites in Bangladesh and the Philippines

Assessment time point

RESULTS

- GBS-DS and MRC sumscores were significantly improved through Week 8 with tanruprubart 30 mg/kg, irrespective of axonal (AMAN) or demyelinating (AIDP) NCS classification (**Table 1**)
- Improvements in MRC sumscores were observed as early as Week 1
- Improvements in ONLS, ventilation, and the time to walk independently were also observed
- Improvements in muscle strength and Timed Up-and-Go test scores were observed as early as Week 1 regardless of GBS NCS classification (Figure 1)
- Patients with AMAN and AIDP were 25 and 7 times more likely to return to normal (GBS-DS=0) with tanruprubart (30 mg/kg) treatment than with placebo, respectively (Figure 2)
- Consistently significant results were observed in the proportion of patients treated with tanruprubart 30 mg/kg who reached no limitations (ONLS=0) compared to placebo in both the AIDP and AMAN subgroups starting at Week 1 (Figure 2)
- Patients with milder disease (baseline MRC sumscore >20) experienced significant response compared to placebo across most measures, while those with MRC sumscore ≤20 had numerical improvement (**Table 1**)
- Patients with baseline serum NfL levels <353 pg/mL (milder disease) receiving tanruprubart 30 mg/kg generally reported significantly better outcomes compared to placebo than those with baseline NfL ≥353 pg/mL, although numerical improvement was still seen on most measures (**Table 1**)

Table 1. Primary and key secondary endpoints for the full analysis set and GBS classification subgroups with tanruprubart 30 mg/kg versus placebo

				Full analysis set	AIDP	AMAN	MRC sumscore >20	MRC sumscore ≤20	Serum NfL <353 pg/mL	Serum NfL ≥353 pg/mL
				(PBO n=81;	(PBO n=18;	(PBO n=49;	(PBO n=49;	(PBO n=38;	(PBO n=40;	(PBO n=39;
Primary	Endpoint	Assesses	Time point	Tanruprubart n=79)	Tanruprubart n=16)	Tanruprubart n=50)	Tanruprubart n=50)	Tanruprubart n=38)	Tanruprubart n=47)	Tanruprubart n=31)
1	GBS-DS: Odds ratio ^a (p value)	GBS disability	Week 8	2.41 (0.0058)	5.31 (0.0130)	2.26 (0.0361)	3.03 (0.0102)	1.51 (0.3651)	2.65 (0.020)	1.21 (0.688)
Secondary hierarchy	LS mean change ^b (p value) ^c									
2	ONLS	Functional disability	Week 8	-0.8 (0.0965)	-1.0 (0.3481)	-1.0 (0.1057)	-2.5 (<0.0001)	-0.4 (0.5410)	-1.2 (0.0674)	0.2 (0.8307)
3	MRC sumscore	Muscle strength	Week 8	4.0 (0.0351)	9.4 (0.0259)	4.0 (0.1022)	3.1 (0.2361)	4.9 (0.0772)	5.4 (0.0324)	1.6 (0.5561)
4			Week 1	10.0 (<0.0001)	11.9 (0.0002)	10.4 (<0.0001)	8.8 (<0.0001)	11.5 (<0.0001)	14.6 (<0.0001)	3.7 (0.0711)
	Median fewer days (p value) ^c									
5	Ventilation ^d	Duration of ventilation – fewer days	Week 26	28 days (0.0356)	142 days p value N/A	14 days p value N/A	21.5 days p value N/A	29 days p value N/A	33 days (0.0909)	91.5 days (0.4679)
	Walking independently	Time to return to walking independently	Week 26	31 days (0.0211)	41 days (0.0048)	0 days (0.0902)	41 days (0.0943)	NC days (0.5161)	34 days (0.0800)	–13 days (0.9455)

aOdds ratio: Likelihood that a patient receiving tanruprubart is in a better state of health relative to placebo. bLS mean point improvement relative to placebo.

Figure 1. MRC sumscore and Timed Up-and-Go test scores at Week 1 in GBS classification subgroups

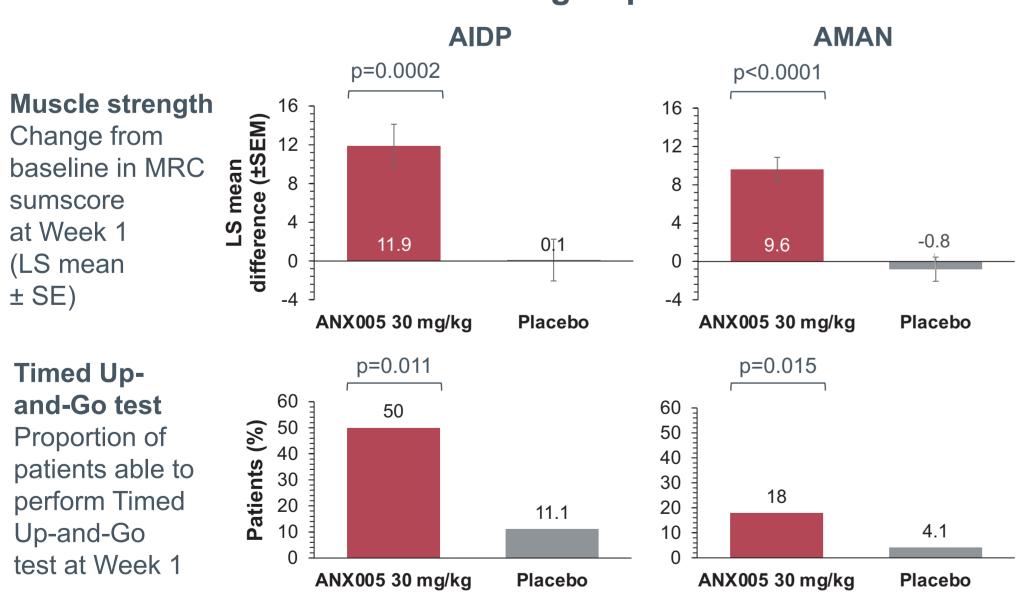
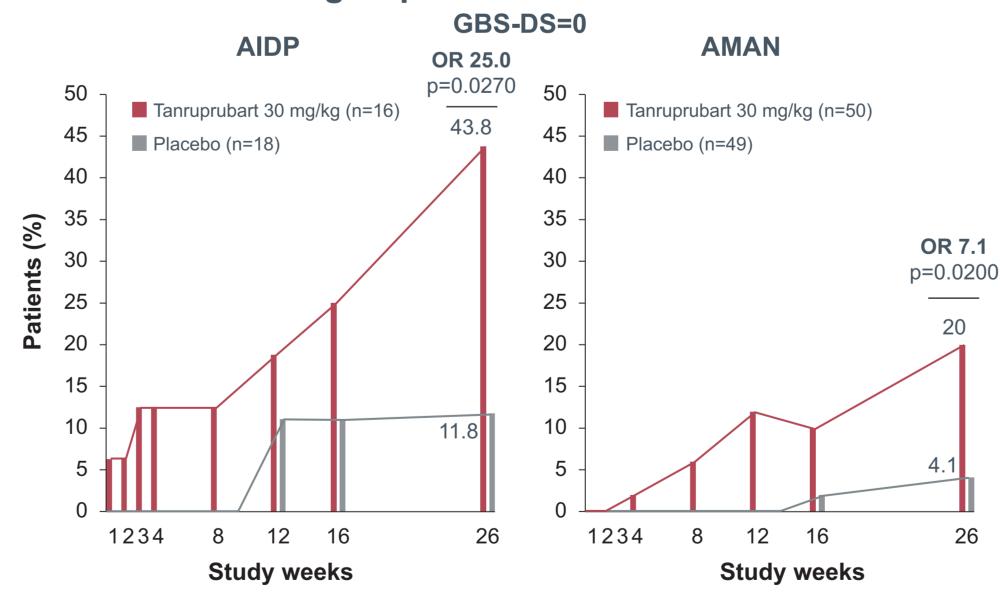
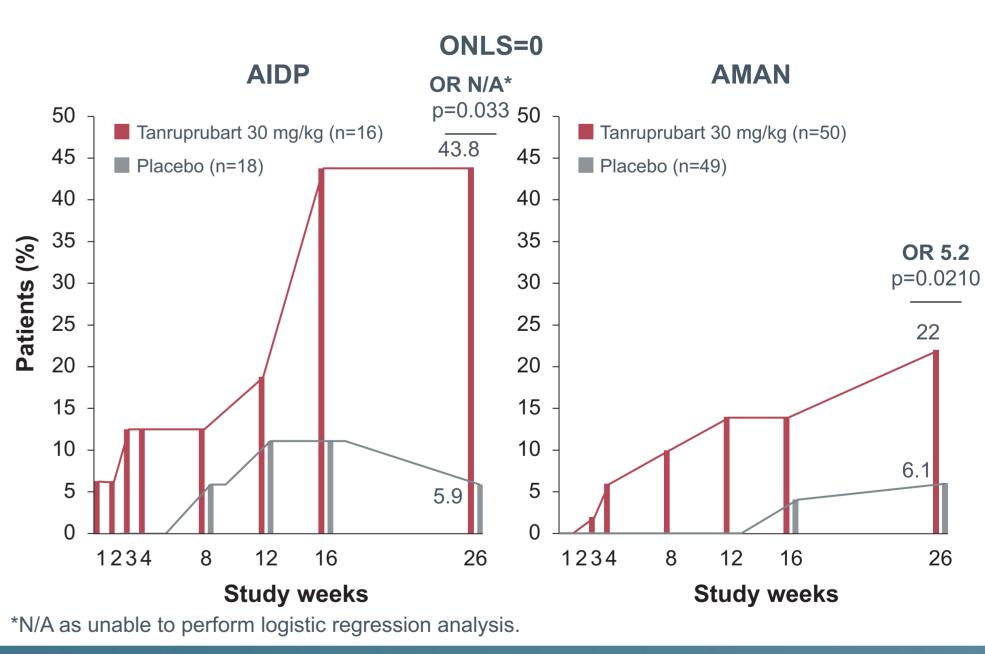




Figure 2. Proportion of patients who fully recovered (GBS-DS=0) or reported no limitations (ONLS=0) over time in GBS classification subgroups

CONCLUSIONS

- Classical complement inhibition with a single dose of tanruprubart was associated with rapid and durable improvements in muscle strength, motor function, and overall health irrespective of GBS severity with deeper effects
- Patients with AMAN and AIDP were 25 and 7 times more likely to return to normal (GBS-DS=0) with tanruprubart (30 mg/kg) treatment than with placebo, respectively, with deeper treatment responses observed in the AIDP subgroup
- Tanruprubart was shown to be highly efficacious in patients with disease characteristics akin to US and European GBS populations reported in the IGOS cohort, supporting tanruprubart as a treatment for a broad spectrum of patients with GBS

References:

2011;76:968–75.

1. Willison HJ, et al. Lancet. 2016;388:717–27. 2. Gorson K. Front Neurol. 2025;16:1572949. 3. Arends S, et al. Eur J Neurol. 2024;31:e16335. 4. Lansita JA, et al. Int J Toxicol. 2017;36:449–62. 5. Suri P, et al. Neurology. 2022;98(18 Suppl):3867. 6. Kroon H-A, et al. Poster presented at the Neuromuscular Study Group Annual Scientific Meeting, 20–22 September 2022, Tarrytown, NY, USA. 7. Data on file. 8. Walgaard C, et al. Neurology.

Acknowledgments

The study was sponsored by Annexon Biosciences (Brisbane, CA, USA). Medical writing and editing assistance were provided by Envision Pharma Group and were funded by Annexon Biosciences.

Disclosures

H-AK: Employment with and shareholder of Annexon Biosciences. JN: Consultancy role with Annexon Biosciences. ZI: Research funding from Fogarty International Center, National Institute of Neurological Disorders and Stroke of the National Institutes of Health, USA, and Annexon Biosciences. PL, GM, PC, BH, DRA, TY: Employment with and shareholder of Annexon Biosciences. KAKA: No relevant disclosures. QDM: Consultancy/advisory role with Annexon Biosciences.

For additional information, please reach out to Dr. Henk-André Kroon, hakroon@annexonbio.com