A Bayesian ordinal transition model of Guillain-Barré syndrome (GBS) disability progression with anti-C1q treatment

Presenter: Glenn Morrison, MSc, PhD

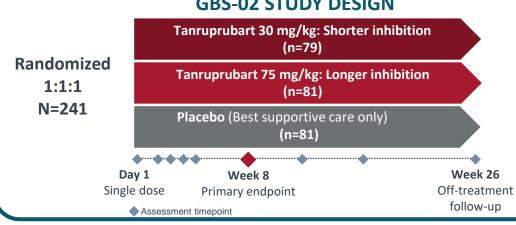
Ping Lin, MS¹; Maximilian Rohde, MS²; Henk-André Kroon, MD, MBA¹; Ewout Steyerberg, MSc, PhD³; Glenn Morrison, MSc, PhD¹; Kenneth C. Gorson, MD⁴; Quazi Deen Mohammad, MBBS, MD, FCPS⁵; Zhahirul Islam, PhD⁶; Khan Abul Kalam Azad, MBBS, FCPS, MD, FACP⁷; Jose Navarro, MD⁸; Peter Collins¹; Frank E. Harrell, PhD²

¹Annexon Biosciences, Brisbane, CA, USA; ²Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN, USA; ³Julius Center for Health Sciences and Primary Care, Utrecht, Netherlands; ⁴St. Elizabeth's Medical Center, Boston, MA, USA; ⁵National Institute of Neurosciences & Hospital, Dhaka, Bangladesh; ⁶Gut–Brain Axis Laboratory, icddr,b, Dhaka, Bangladesh; ⁷Dhaka Medical College and Hospital, Dhaka, Bangladesh; ⁸José R. Reyes Memorial Medical Center, Manila, Philippines

PRESENTED AT THE 11TH CONGRESS OF THE EUROPEAN ACADEMY OF NEUROLOGY | JUNE 21–24, 2025, HELSINKI, FINLAND

Acknowledgments: The study was sponsored by Annexon Biosciences (Brisbane, CA, USA). Medical writing and editing assistance were provided by Envision Pharma Group and were funded by Annexon Biosciences.

Conflicts of interest


Ping Lin: Employee and shareholder of Annexon Biosciences at the time of the study; **Maximilian Rohde, Henk-André Kroon, Glenn Morrison, and Peter Collins:** Employee and shareholder of Annexon Biosciences; **Ewout Steyerberg:** Consultancy/advisory role with Annexon Biosciences; **Kenneth C. Gorson:** Consultancy/advisory role with Annexon Biosciences, argenx, Janssen, and Sanofi; **Quazi Deen Mohammad**: Consultancy/advisory role with Annexon Biosciences; **Zhahirul Islam:** Research funding from Fogarty International Center, National Institute of Neurological Disorders and Stroke of the National Institutes of Health, USA, and Annexon Biosciences; **Khan Abul Kalam Azad**: No disclosures; **Jose Navarro:** Consultancy/advisory role with Annexon Biosciences, Baylor Scott & White Research Institute, and Regeneron.

Tanruprubart (ANX005) is investigational and has not been approved for any indication in any jurisdiction

GBS-02: Double-blind, Phase 3 study in adults with Guillain-Barré Syndrome (NCT04701164)

GBS, a rare, rapidly progressive and life-threatening neuromuscular emergency is a prototypical classical complement-mediated disease^{1,2}

Tanruprubart (ANX005) rapidly and completely inhibits C1q, preventing classical complement pathway activation to reduce neuroinflammation and nerve damage

GBS-02 STUDY DESIGN

- **Primary endpoint met:** Participants in the tanruprubart 30 mg/kg group had **2.4 times** greater odds of being in a **better state of health** versus placebo on GBS-DS at Week 8 (p=0.0058)
- Tanruprubart was **well tolerated** and the majority of adverse events were **mild to moderate** in severity; most were due to GBS and not considered related to the study drug, with the exception of rash, which was the most common infusion-related reaction

Traditional analyses track functional impairment using GBS-DS but **do not model transitions between disability states** over time and cannot handle death optimally

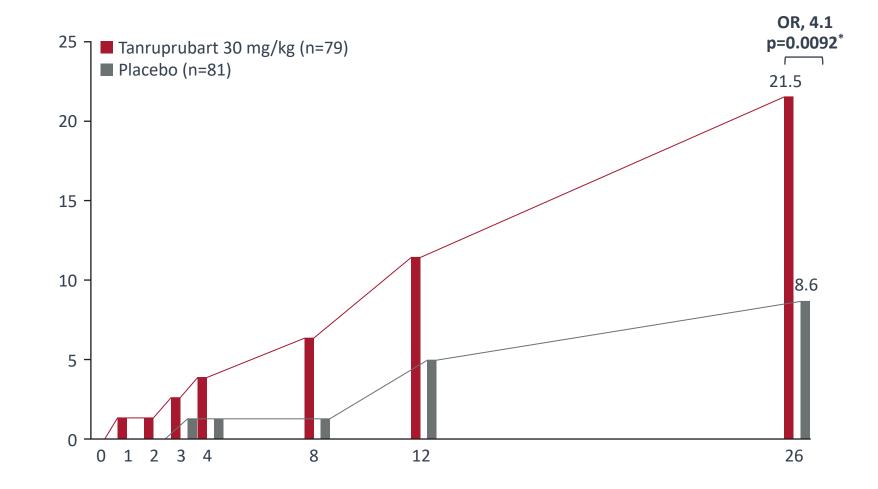
Aim: To better characterize longitudinal outcomes in the GBS-DS scale in study GBS-02 using a Bayesian ordinal transition model

GBS, Guillain-Barré syndrome; GBS-DS, Guillain-Barré syndrome disability score.

GBS-DS: Used to assess functional status in patients with GBS

1. van Koningsveld R et al. *Lancet Neurol*. 2007;6:589–94. 2. Kleyweg RP et al. *Muscle Nerve*. 1991;14):1103–9.
GBS, Guillain-Barré syndrome; GBS-DS, Guillain-Barré syndrome disability score; MRC, Medical Research Council.

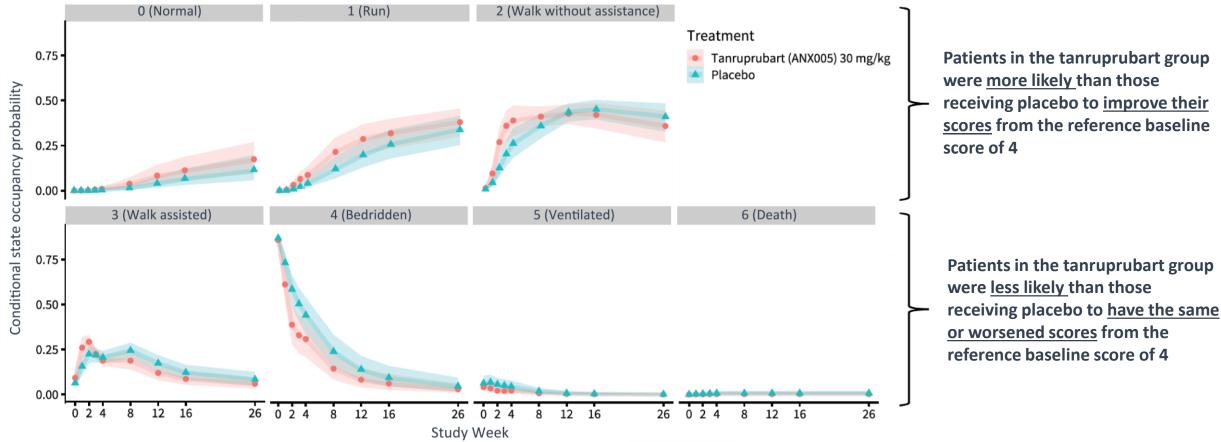
Methods


- Prespecified secondary endpoint: to analyze the proportion of participants that reached a healthy state (GBS-DS=0 [normal]) calculated using logistic regression
- A Bayesian ordinal transition model with a first-order Markov transition structure was fit in a *post hoc* analysis to the longitudinal, ordinal GBS-DS data
 - Non-informative priors were used for all parameters
 - Baseline prognostic factors were used as covariates: age, days from onset of muscle weakness, and baseline MRC sumscore
 - The effect of treatment was allowed to flexibly vary over time by treatment group using natural cubic splines
 - Conditional quantities were computed using the median values for each covariate
 - Transition probabilities were used to calculate state occupancy probabilities
 - Transition probabilities: the probability of a participant moving from the state at the previous visit to the state at the current study visit
 - State occupancy probabilities: the probability of a participant being in a certain ordinal state on a given study visit

Results: Durable benefit with tanruprubart over placebo

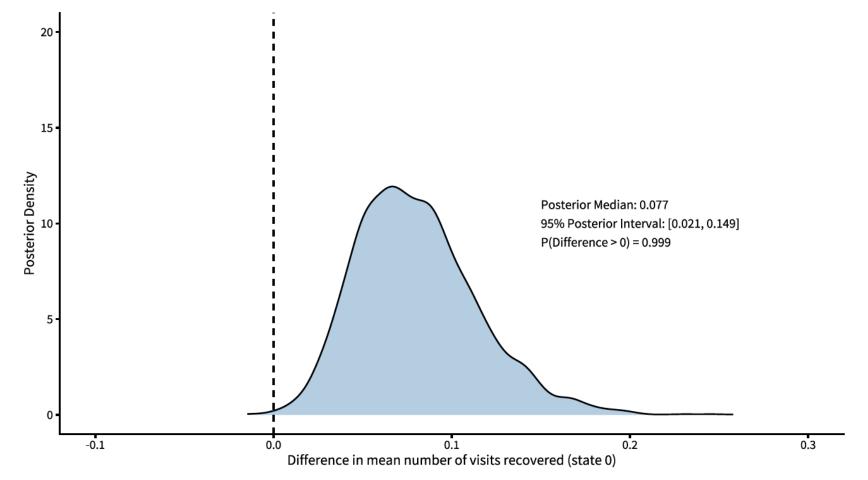
At Week 26, participants who received tanruprubart 30 mg/kg had 4.1-fold greater odds of having fully recovered to GBS-DS=0 compared with participants who received placebo

2.5-times more tanruprubart-treated participants fully recover at Week 26 (GBS-DS=0)


Effect began early and grew throughout study

Results: Conditional probability of health state achievement for tanruprubart 30 mg/kg vs placebo

Participants receiving tanruprubart had a higher probability of good health status at each visit through 6 months, compared with placebo, and improvements occurred rapidly within the first 3 weeks


Cumulative treatment effect across 6 months with reference baseline GBS-DS=4

6 GBS-DS, Guillain-Barré syndrome disability score; SOP, state occupancy probability

Results: Difference in mean visits recovered with tanruprubart 30 mg/kg vs placebo (covariate adjustment)

On average, participants receiving tanruprubart 30 mg/kg were more likely to have more study visits with GBS-DS=0 throughout the study versus those receiving placebo, with a high posterior probability (0.999)

Conclusion

Tanruprubart 30 mg/kg demonstrated rapid and sustained improvement through 6 months

Bayesian ordinal transition models can increase power and present a longitudinal view of treatment effect, compared with traditional cross-sectional methods, providing more actionable evidence about efficacy through posterior probabilities

Across the 26-Week period of the study, participants in the tanruprubart 30 mg/kg group had a higher probability of having a good health status and making a full recovery (more days with GBS-DS=0) versus those receiving placebo

These data highlight the potential for tanruprubart to significantly improve outcomes over time for patients with Guillain-Barré Syndrome