C1q inhibition attenuates microglia-induced neuronal injury: Implications for GA and neurodegenerative diseases

Profesor Paulo Stanga

The Retina Clinic London

Presented at the 25th EURetina Congress, 4-7 September 2025

Paris, France

Relevant Disclosures

Professor Stanga is a consultant to, and an investigator for, Annexon

Targeting C1q-Mediated Neurodegeneration – Preservation of Synapses and Neuronal Function

Dr. Ben Barres discovery of C1q's role in neurodegeneration (2007)

Spawned entire fields and Validated in labs world-wide¹

Anti-C1q protective in several disease models

Ben Barres, M.D., Ph.D.
Discoverer of C1q Technology
Chair of Neurobiology at
Stanford University
Scientific Co-Founder, Annexon

KEY DISCOVERIES:

- 1. C1q normally functions to eliminate excess synapses in development¹
- 2. C1q-mediated synaptic pruning is common pathway of neurodegeneration
- 3. C1q inhibition protects against synapse loss and neurodegeneration in several disease models²

- Alzheimer's disease
- Amyotrophic Lateral Sclerosis
- Frontotemporal dementia
- Geographic Atrophy
- Glaucoma
- Guillain-Barré Syndrome
- Huntington's disease
- Retinal ischemia
- Schizophrenia
- Spinal muscular atrophy
- Traumatic brain injury

C1q is A Common Driver of Neurodegeneration in Both the Central and Peripheral Nervous System

C1q directly binds to synapses on stressed neurons, triggering elimination

C1q targeting synapses for elimination in the retina¹

C1q targeting synapses for elimination in the brain²

C1q targeting neuromuscular junction (NMJ) for elimination in the PNS³

MODEL OF PHOTORECEPTOR DEGENERATION

MODEL OF HUNTINGTON'S DISEASE

MODEL OF AMYOTROPHIC LATERAL SCLEROSIS

C1Q INHIBITION PROTECTS AGAINST SYNAPSE LOSS AND NEURODEGENERATION IN SEVERAL DISEASE MODELS⁴

C1q Inhibition in Huntington's Disease (HD)

Phase 2 Open-Label Clinical Trial of Tanruprubart (ANX005) in Patients With or At Risk of Huntington's Disease (HD)

Study Design:

24-week treatment period (n=28)

12-week off-treatment follow-up

Induction dosing of ANX005 administered by IV infusion on Days 1 and 5 or 6, followed by maintenance dosing every 2 weeks through Week 22

Follow up visits on Weeks 24, 28, and 36

Overall Population (n=23): cHUDRS Stable Over 9 Months

High Complement Activity at Baseline (n=12): cHURDS Reflects Treatment Benefit at All Time Points

C1q Inhibition in Dry AMD and GA

Two Structural Disease Interfaces in Advanced Dry AMD

Monitoring RPE alone provides incomplete view of disease; assess photoreceptors and function for complete picture

¹Selkoe, 2002 doi: 10.1126/science.1074069; Burger, et al., doi.org/10.1016/j.ydbio.2021.04.001; ²Bird et al., 2014 *JAMA Ophthalmol* doi:10.1001/jamaophthalmol.2013.5799; Li, et al., 2018 *Retina* 38:1937; Pfau, et al., 2020 10.1001/jamaophthalmol.2020.2914; Sarks, et al., 1988 *Eye* 2:552; ³Heier, et al., 2020 Ophthalmology Retina 4:673; ⁴Shen, et al., 2020 *Ophthalmol Retina* 4:899

Expression of C1q, A Critical Driver of Synapse Removal Across the CNS, Increases With Aging

Classical Complement Cascade Uniquely Responsible for Neuroinflammation and Synapse Removal

C1q Expression Increased with Aging in CNS: Rodents and Humans

C1q-Driven Neuroinflammation Results in Photoreceptor Loss in An Animal Model

Upon Photoreceptor Damage in a Rodent Model, Microglia Engulf C1q-Coated Synapses

C1q inhibition reduced reactive microglia, synapse loss, & photoreceptor loss, and protected function

Tassoni, et al., ARVO, 2024 and Annexon on file Synapses (presynaptic / bassoon, red) C1q (green) Microglia (Iba1, magenta) DAPI (nuclei, blue)

/ Microglia

Synapses

ARCHER: Phase 2 Trial Of The C1q Inhibitor ANX007 (Vonaprument) in Patients with Dry AMD and GA

PRIMARY ENDPOINT

Rate of Change in GA lesion area as assessed by fundus autofluorescence at Month 12

PRESPECIFIED FUNCTIONAL ANALYSES

Best Corrected Visual Acuity (BCVA)
Low Luminance Visual Acuity (LLVA) & Deficit (LLVD)

Off-treatment (6 months)

END OF STUDY

Month 18

Fewer Vonaprument-Treated Eyes Experienced BCVA ≥15-Letter Loss Compared to Sham

PROPORTION OF PATIENTS WITH CONFIRMED BCVA ≥15-LETTER LOSS AT TWO CONSECUTIVE VISITS THROUGH MONTH 12*

^{*}BCVA ≥15-Letter Loss at Month 12 was confirmed at the subsequent visit (Month 15). In ARCHER, visits were monthly through Month 12 and then at Months 15 & 18

PROBABILITY OF CONFIRMED## BCVA ≥15-LETTER LOSS THROUGH MONTH 12

^{##}Confirmed for two consecutive visits through month 12; month 12 confirmed at month 15 visit

[^]Nominal p-value from a Chi-square test in ITT population: *Nominal p < 0.05

[^]Nominal p-value from a Chi-square test in ITT population

^{*} P < 0.05

Fewer Vonaprument-Treated Eyes Experienced BCVA ≥15-Letter Loss Compared to Sham

PATIENTS WITH CONFIRMED BCVA ≥15-LETTER LOSS THROUGH MONTH 12 OR LAST VISIT# 25 – 21.3% 5.6% 9.8% 20-% Patients * * 9/92 5/89 19/89 Sham Vonaprument Vonaprument EM **EOM** Nominal p-value vs Pooled Sham^ 0.0021 0.032

^{*}Persistent for two consecutive visits through month 12 or at last study visit ^Nominal p-value from a Chi-square test in ITT population: * Nominal p < 0.05

Numerically Greater Photoreceptor Protection in Central Macula with Vonaprument

Comparison of Vonaprument effect on Ellipsoid Zone (EZ) across macula and in central subdomains through 12 months

[^]Nominal p-values from a linear mixed model for repeated measures model (slope) analysis;
Heidelberg Spectralis OCT population with baseline OCT data, excludes patients with >98% atrophy/attenuation at baseline

ARCHER: Key Safety Data

ADVERSE EVENTS OF SPECIAL INTEREST n (%)	SHAM (N=89)	VONAPRUMENT EM (N=89)	VONAPRUMENT EOM (N=92)
Choroidal Neovascularization	3 (3.4%)	4 (4.5%)	4 (4.3%)
Endophthalmitis	0	1 (1.1%)	2 (2.2%)
Retinal Vascular Occlusion	0	0	1^ (1.1%)
Retinal Vasculitis	0	0	0
Intraocular Inflammation ⁺	0	2 (2.2%)	1 (1.1%)
Ischemic Optic Neuropathy ⁺	0	0	0

[^]Isolated cilioretinal artery occlusion; no vasculitis confirmed by DSMC and reading center

INTRAOCULAR INFLAMMATION DETAILS* n

Iritis - 1

Resolved with topical steroids in 2 days No Vasculitis

Vitritis - 1

Resolved with topical steroids in 9 days No Vasculitis

Vitreous Debris – 1

KP on endothelium, prior treatment with topical steroids No Vasculitis

^{*}Not AESI, included because of current interest

^{*}Event Verbatim term listed

ARCHER II Phase 3 Program – Now Fully Enrolled

POPULATION FOR ARCHER II: Similar to ARCHER population, including foveal and non-foveal lesions and enriched for BCVA to exclude those with <45 ETDRS letters at baseline

PRIME designation from EMA

PRIMARY ENDPOINT

Confirmed* BCVA ≥15-letter loss through primary analysis timepoint

* ≥15-letter loss confirmed at two consecutive visits

SECONDARY ENDPOINTS

Safety, LLVA, EZ integrity

Conclusions: C1q Inhibition

- C1q Inhibition across several neurodegenerative diseases appears to convey protective effects resulting in functional benefits
 - ANX005 improved measures of clinical function in HD patients with high baseline levels of complement activity in a Phase 2 trial
 - Outcomes in the phase 2 ARCHER trial in eyes with dry AMD/GA suggest vonaprument may provide protection against the risk of vision loss and the loss of synapses and photoreceptors
- Clinical trials are ongoing in multiple serious autoimmune & neurodegenerative diseases
- Phase 3 ARCHER II trial of vonaprument in Dry AMD with GA:
 - Is the only global pivotal program with vision preservation as the primary endpoint
 - Has a path to global registration
 - EMA: PRIME designation; Selected to Participate in Product Development Coordinator Pilot
 - FDA: Fast Track Designation
 - Has completed enrollment; Data Expected 2H 2026